Can you get omega 3 from plants

1. Insel P., Ross D., McMahon K. Discovering Nutrition. Jones & Bartlett Publishers; 2013. [Google Scholar]

2. Pereira S. L., Leonard A. E., Huang Y.-S., Chuang L.-T., Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochemical Journal. 2004;384(2):357–366. doi: 10.1042/BJ20040970. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ruiz-López N., Sayanova O., Napier J. A., Haslam R. P. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. Journal of Experimental Botany. 2012;63(7):2397–2410. doi: 10.1093/jxb/err454. [PubMed] [CrossRef] [Google Scholar]

4. Rombaldi Bernardi J., de Souza Escobar R., Ferreira C. F., Pelufo Silveira P. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth. The Scientific World Journal. 2012;2012:8. doi: 10.1100/2012/202473.202473 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Simopoulos A. P. Human requirement for N-3 polyunsaturated fatty acids. Poultry Science. 2000;79(7):961–970. doi: 10.1093/ps/79.7.961. [PubMed] [CrossRef] [Google Scholar]

7. Moynihan P. Nutrition: the British nutrition foundation oral task force report—issues relevant to dental health professionals. British Dental Journal. 2000;188(6):308–312. [PubMed] [Google Scholar]

8. Burdge G. C., Calder P. C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development. 2005;45(5):581–597. doi: 10.1051/rnd:2005047. [PubMed] [CrossRef] [Google Scholar]

9. WHO. Population Nutrient Intake Goals for Preventing Diet-Related Chronic Diseases. Geneva, Switzerland: WHO; 2003. [Google Scholar]

10. Tetens I. Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies on a Request from the: Question No EFSA-Q-2008-269. European Food Safety Authority; 2008. [Google Scholar]

11. Sioen I., De Henauw S., Van Camp J., Volatier J.-L., Leblanc J.-C. Comparison of the nutritional-toxicological conflict related to seafood consumption in different regions worldwide. Regulatory Toxicology and Pharmacology. 2009;55(2):219–228. doi: 10.1016/j.yrtph.2009.07.003. [PubMed] [CrossRef] [Google Scholar]

12. Gogus U., Smith C. N-3 omega fatty acids: a review of current knowledge. International Journal of Food Science and Technology. 2010;45(3):417–436. doi: 10.1111/j.1365-2621.2009.02151.x. [CrossRef] [Google Scholar]

13. Meyer B. J., Mann N. J., Lewis J. L., Milligan G. C., Sinclair A. J., Howe P. R. C. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids. 2003;38(4):391–398. doi: 10.1007/s11745-003-1074-0. [PubMed] [CrossRef] [Google Scholar]

14. Calder P. C., Yaqoob P. Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors. 2009;35(3):266–272. doi: 10.1002/biof.42. [PubMed] [CrossRef] [Google Scholar]

15. DeFilippis A. P., Blaha M. J., Jacobson T. A. Omega-3 fatty acids for cardiovascular disease prevention. Current Treatment Options in Cardiovascular Medicine. 2010;12(4):365–380. doi: 10.1007/s11936-010-0079-4. [PubMed] [CrossRef] [Google Scholar]

16. Kromhout D., Bosschieter E. B., De Lezenne Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. New England Journal of Medicine. 1985;312(19):1205–1209. doi: 10.1056/NEJM198505093121901. [PubMed] [CrossRef] [Google Scholar]

17. Kris-Etherton P. M., Hu F. B., Ros E., Sabaté J. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. The Journal of Nutrition. 2008;138(9):1746S–1751S. [PubMed] [Google Scholar]

18. Wang C., Harris W. S., Chung M., et al. n-3 fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. American Journal of Clinical Nutrition. 2006;84(1):5–17. [PubMed] [Google Scholar]

19. Montori V. M., Farmer A., Wollan P. C., Dinneen S. F. Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care. 2000;23(9):1407–1415. doi: 10.2337/diacare.23.9.1407. [PubMed] [CrossRef] [Google Scholar]

20. Rose D. P., Connolly J. M., Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Research. 1996;2(10):1751–1756. [PubMed] [Google Scholar]

21. Rose D. P., Connolly J. M. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics. 1999;83(3):217–244. doi: 10.1016/S0163-7258(99)00026-1. [PubMed] [CrossRef] [Google Scholar]

22. Rose D. P., Connolly J. M. Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. Journal of the National Cancer Institute. 1993;85(21):1743–1747. doi: 10.1093/jnci/85.21.1743. [PubMed] [CrossRef] [Google Scholar]

23. Cockbain A. J., Toogood G. J., Hull M. A. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61(1):135–149. doi: 10.1136/gut.2010.233718. [PubMed] [CrossRef] [Google Scholar]

24. Weylandt K. H., Chiu C.-Y., Gomolka B., Waechter S. F., Wiedenmann B. Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Omega-3 fatty acids and their resolvin/protectin mediators. Prostaglandins and Other Lipid Mediators. 2012;97(3-4):73–82. doi: 10.1016/j.prostaglandins.2012.01.005. [PubMed] [CrossRef] [Google Scholar]

25. Calder P. C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition. 2006;83(6):S1505–1519S. [PubMed] [Google Scholar]

26. Conquer J. A., Tierney M. C., Zecevic J., Bettger W. J., Fisher R. H. Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids. 2000;35(12):1305–1312. doi: 10.1007/s11745-000-0646-3. [PubMed] [CrossRef] [Google Scholar]

27. Simopoulos A. P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine. 2008;233(6):674–688. doi: 10.3181/0711-MR-311. [PubMed] [CrossRef] [Google Scholar]

28. Fabian C. J., Kimler B. F., Petroff B. K., et al. High-dose omega-3 fatty acid supplementation to modulate breast tissue biomarkers in premenopausal women at high risk for development of breast cancer. Cancer Research. 2013;31:p. 73. [Google Scholar]

29. Bishop K. S., Erdrich S., Karunasinghe N., et al. An investigation into the association between DNA damage and dietary fatty acid in men with prostate cancer. Nutrients. 2015;7(1):405–422. doi: 10.3390/nu7010405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Gu Z., Suburu J., Chen H., Chen Y. Q. Mechanisms of omega-3 polyunsaturated fatty acids in prostate cancer prevention. BioMed Research International. 2013;2013:10. doi: 10.1155/2013/824563.824563 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Kang J. X., Liu A. The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer and Metastasis Reviews. 2013;32(1-2):201–210. doi: 10.1007/s10555-012-9401-9. [PubMed] [CrossRef] [Google Scholar]

32. Masko E. M., Allott E. H., Freedland S. J. The relationship between nutrition and prostate cancer: is more always better? European Urology. 2013;63(5):810–820. doi: 10.1016/j.eururo.2012.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Simopoulos A. P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Experimental Biology and Medicine. 2010;235(7):785–795. doi: 10.1258/ebm.2010.009298. [PubMed] [CrossRef] [Google Scholar]

34. Eckert G. P., Franke C., Nöldner M., et al. Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacological Research. 2010;61(3):234–241. doi: 10.1016/j.phrs.2010.01.005. [PubMed] [CrossRef] [Google Scholar]

35. Nabavi S. F., Bilotto S., Russo G. L., et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer and Metastasis Reviews. 2015;34(3):359–380. doi: 10.1007/s10555-015-9572-2. [PubMed] [CrossRef] [Google Scholar]

36. Piccolo T. Framework analysis of fish waste to biodiesel production-Aquafinca. Case study. 2008.

37. Tocher D. R. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technology. 2009;21(1):13–16. doi: 10.1002/lite.200800079. [CrossRef] [Google Scholar]

38. Hixson S. M. Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. Journal of Aquaculture Research & Development. 2014;5(3) doi: 10.4172/2155-9546.1000234.1000234 [CrossRef] [Google Scholar]

39. Arthur R. Omega-3 sources. Journal of Complementary Medicine. 2009;8(3):28–48. [Google Scholar]

40. FAO. The State of World Fisheries and Aquaculture. Rome, Italy: Food and Agriculture Organization of the United Nations; 2010. [Google Scholar]

41. Sumaila U. R., Khan A., Watson R., et al. The World Trade Organization and global fisheries sustainability. Fisheries Research. 2007;88:1–4. [Google Scholar]

42. Ruiz-López N., Haslam R. P., Venegas-Calerón M., et al. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Research. 2012;21(6):1233–1243. doi: 10.1007/s11248-012-9596-0. [PubMed] [CrossRef] [Google Scholar]

43. Lee J. H., O'Keefe J. H., Lavie C. J., Harris W. S. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nature Reviews Cardiology. 2009;6(12):753–758. doi: 10.1038/nrcardio.2009.188. [PubMed] [CrossRef] [Google Scholar]

44. Petrie J. R., Shrestha P., Belide S., et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0085061.e85061 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Qi B., Fraser T., Mugford S., et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology. 2004;22(6):739–745. doi: 10.1038/nbt972. [PubMed] [CrossRef] [Google Scholar]

46. Wu G., Truksa M., Datla N., et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnology. 2005;23(8):1013–1017. doi: 10.1038/nbt1107. [PubMed] [CrossRef] [Google Scholar]

47. Venegas-Calerón M., Sayanova O., Napier J. A. An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progress in Lipid Research. 2010;49(2):108–119. doi: 10.1016/j.plipres.2009.10.001. [PubMed] [CrossRef] [Google Scholar]

48. Ryckebosch E., Bruneel C., Termote-Verhalle R., Goiris K., Muylaert K., Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry. 2014;160:393–400. doi: 10.1016/j.foodchem.2014.03.087. [PubMed] [CrossRef] [Google Scholar]

49. Bell J. G., Pratoomyot J., Strachan F., et al. Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: effects of replacement of dietary fish oil with vegetable oils. Aquaculture. 2010;306(1–4):225–232. doi: 10.1016/j.aquaculture.2010.05.021. [CrossRef] [Google Scholar]

50. Kralovec J. A., Zhang S., Zhang W., Barrow C. J. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry. 2012;131(2):639–644. doi: 10.1016/j.foodchem.2011.08.085. [CrossRef] [Google Scholar]

51. Nichols P. D., Glencross B., Petrie J. R., Singh S. P. Readily available sources of long-chain omega-3 oils: is farmed australian seafood a better source of the good oil than wild-caught seafood? Nutrients. 2014;6(3):1063–1079. doi: 10.3390/nu6031063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Pauly D., Christensen V., Guénette S., et al. Towards sustainability in world fisheries. Nature. 2002;418(6898):689–695. doi: 10.1038/nature01017. [PubMed] [CrossRef] [Google Scholar]

53. Qiu X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukotrienes and Essential Fatty Acids. 2003;68(2):181–186. doi: 10.1016/s0952-3278(02)00268-5. [PubMed] [CrossRef] [Google Scholar]

54. Behrens P. W., Kyle D. J. Microalgae as a source of fatty acids. Journal of Food Lipids. 1996;3(4):259–272. doi: 10.1111/j.1745-4522.1996.tb00073.x. [CrossRef] [Google Scholar]

55. Chisti Y. Biodiesel from microalgae. Biotechnology Advances. 2007;25(3):294–306. doi: 10.1016/j.biotechadv.2007.02.001. [PubMed] [CrossRef] [Google Scholar]

56. Wright K., Coverston C., Tiedeman M., Abegglen J. A. Formula supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA): a critical review of the research. Journal for Specialists in Pediatric Nursing. 2006;11(2):100–112. doi: 10.1111/j.1744-6155.2006.00048.x. [PubMed] [CrossRef] [Google Scholar]

57. Sharpe P. L., Zhu Q., Xue Z., et al. Production of omega-3 fatty acids via the fermentation of engineered strains of the oleaginous yeast Yarrowia lipolytica. Proceedings of the Annual Meeting and Exhibition; July 2009. [Google Scholar]

58. Barclay W. R., Meager K. M., Abril J. R. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology. 1994;6(2):123–129. doi: 10.1007/BF02186066. [CrossRef] [Google Scholar]

59. Haslam R. P., Ruiz-Lopez N., Eastmond P., Moloney M., Sayanova O., Napier J. A. The modification of plant oil composition via metabolic engineering—better nutrition by design. Plant Biotechnology Journal. 2013;11(2):157–168. doi: 10.1111/pbi.12012. [PubMed] [CrossRef] [Google Scholar]

60. Robert S. S., Singh S. P., Zhou X.-R., et al. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Functional Plant Biology. 2005;32(6):473–479. doi: 10.1071/fp05084. [CrossRef] [Google Scholar]

61. Kajikawa M., Matsui K., Ochiai M., et al. Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes. Bioscience, Biotechnology and Biochemistry. 2008;72(2):435–444. doi: 10.1271/bbb.70549. [PubMed] [CrossRef] [Google Scholar]

62. Morais S., Edvardsen R. B., Tocher D. R., Bell J. G. Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for fish oil. Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology. 2012;161(3):283–293. doi: 10.1016/j.cbpb.2011.12.004. [PubMed] [CrossRef] [Google Scholar]

63. Hixson S. M., Parrish C. C., Anderson D. M. Use of camelina oil to replace fish oil in diets for farmed salmonids and atlantic cod. Aquaculture. 2014;431:44–52. doi: 10.1016/j.aquaculture.2014.04.042. [CrossRef] [Google Scholar]

64. Adarme-Vega T. C., Thomas-Hall S. R., Lim D. K. Y., Schenk P. M. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Marine Drugs. 2014;12(6):3381–3398. doi: 10.3390/md12063381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Huynh M. D., Kitts D. D. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chemistry. 2009;114(3):912–918. doi: 10.1016/j.foodchem.2008.10.038. [CrossRef] [Google Scholar]

66. Kitson A. P., Patterson A. C., Izadi H., Stark K. D. Pan-frying salmon in an eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enriched margarine prevents EPA and DHA loss. Food Chemistry. 2009;114(3):927–932. doi: 10.1016/j.foodchem.2008.10.039. [CrossRef] [Google Scholar]

67. Chuang L.-T., Bülbül U., Wen P.-C., Glew R. H., Ayaz F. A. Fatty acid composition of 12 fish species from the Black Sea. Journal of Food Science. 2012;77(5):C512–C518. doi: 10.1111/j.1750-3841.2012.02661.x. [PubMed] [CrossRef] [Google Scholar]

68. Loukas V., Dimizas C., Sinanoglou V. J., Miniadis-Meimaroglou S. EPA, DHA, cholesterol and phospholipid content in Pagrus pagrus (cultured and wild), Trachinus draco and Trigla lyra from Mediterranean Sea. Chemistry and Physics of Lipids. 2010;163(3):292–299. doi: 10.1016/j.chemphyslip.2010.01.004. [PubMed] [CrossRef] [Google Scholar]

69. Heissenberger M., Watzke J., Kainz M. J. Effect of nutrition on fatty acid profiles of riverine, lacustrine, and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiologia. 2010;650(1):243–254. doi: 10.1007/s10750-010-0266-z. [CrossRef] [Google Scholar]

70. Gladyshev M. I., Lepskaya E. V., Sushchik N. N., et al. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon oncorhynchus nerka. Journal of Food Science. 2012;77(12):C1307–C1310. doi: 10.1111/j.1750-3841.2012.02998.x. [PubMed] [CrossRef] [Google Scholar]

71. Gladyshev M. I., Sushchik N. N., Gubanenko G. A., Demirchieva S. M., Kalachova G. S. Effect of boiling and frying on the content of essential polyunsaturated fatty acids in muscle tissue of four fish species. Food Chemistry. 2007;101(4):1694–1700. doi: 10.1016/j.foodchem.2006.04.029. [CrossRef] [Google Scholar]

72. Kris-Etherton P. M., Taylor D. S., Yu-Poth S., et al. Polyunsaturated fatty acids in the food chain in the United States. American Journal of Clinical Nutrition. 2000;71(1):179s–188s. [PubMed] [Google Scholar]

73. Khozin-Goldberg I., Didi-Cohen S., Shayakhmetova I., Cohen Z. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae) Journal of Phycology. 2002;38(4):745–756. doi: 10.1046/j.1529-8817.2002.02006.x. [CrossRef] [Google Scholar]

74. Hu H., Gaol K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters. 2003;25(5):421–425. doi: 10.1023/A:1022489108980. [PubMed] [CrossRef] [Google Scholar]

75. Pal D., Khozin-Goldberg I., Cohen Z., Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsissp. Applied Microbiology and Biotechnology. 2011;90(4):1429–1441. doi: 10.1007/s00253-011-3170-1. [PubMed] [CrossRef] [Google Scholar]

76. Patil V., Källqvist T., Olsen E., Vogt G., Gislerød H. R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International. 2007;15(1):1–9. doi: 10.1007/s10499-006-9060-3. [CrossRef] [Google Scholar]

77. Van Wagenen J., Miller T. W., Hobbs S., Hook P., Crowe B., Huesemann M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies. 2012;5(3):731–740. doi: 10.3390/en5030731. [CrossRef] [Google Scholar]

78. Sang M., Wang M., Liu J., Zhang C., Li A. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. Journal of Ocean University of China. 2012;11(2):181–186. doi: 10.1007/s11802-012-1868-z. [CrossRef] [Google Scholar]

79. Bhosale R. A., Rajabhoj M. P., Chaugule B. B. Dunaliella salina Teod. as a prominent source of eicosapentaenoic acid. International Journal on Algae. 2010;12(2):185–189. doi: 10.1615/interjalgae.v12.i2.70. [CrossRef] [Google Scholar]

80. Mendes A., Da Silva T. L., Reis A. DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technology and Biotechnology. 2007;45(1):38–44. [Google Scholar]

81. Lang I., Hodac L., Friedl T., Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology. 2011;11, article 124 doi: 10.1186/1471-2229-11-124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Hamilton M. L., Powers S., Napier J. A., Sayanova O. Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom phaeodactylum tricornutum. Marine Drugs. 2016;14(3, article no. 53) doi: 10.3390/md14030053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Guihéneuf F., Mimouni V., Ulmann L., Tremblin G. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. Journal of Experimental Marine Biology and Ecology. 2009;369(2):136–143. doi: 10.1016/j.jembe.2008.11.009. [CrossRef] [Google Scholar]

84. Petrie J. R., Shrestha P., Mansour M. P., Nichols P. D., Liu Q., Singh S. P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Metabolic Engineering. 2010;12(3):233–240. doi: 10.1016/j.ymben.2009.12.001. [PubMed] [CrossRef] [Google Scholar]

85. Petrie J. R., Singh S. P. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AoB PLANTS. 2011;2011 doi: 10.1093/aobpla/plr011.plr011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Kinney A. J., Cahoon E. B., Damude H. G., Hitz W. D., Kolar C. W., Liu Z. Production of very long chain polyunsaturated fatty acids in oilseed plants. Patent WO., vol. 71467:A2., 2004.

87. Cheng B., Wu G., Vrinten P., Falk K., Bauer J., Qiu X. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Research. 2010;19(2):221–229. doi: 10.1007/s11248-009-9302-z. [PubMed] [CrossRef] [Google Scholar]

What plant has the highest omega

Purslane has recently been identified as the richest vegetable source of alpha-linolenic acid, an essential omega-3 fatty acid [10].

Is omega

There are two main sources of omega-3 fatty acids: marine sources (fatty fish) provide EPA and DHA, and plant food sources (flax, walnuts, canola oil) provide ALA. These are also widely available and popular dietary supplements. Whether plant sources or marine sources confer similar benefits is still controversial.

Which plant has omega

Walnuts, soy foods, pumpkin seeds, and canola (rapeseed) oil are additional sources of Omega-3 fats. These foods contain a lower concentration of ALA than flax and Chia seeds, but they can still help boost your overall ALA intake.

How can I get omega

Below are some vegetarian and vegan food sources of omega-3..
Seaweed and algae. Seaweed, nori, spirulina, and chlorella are different forms of algae that many people eat for their health benefits. ... .
Chia seeds. ... .
Hemp seeds. ... .
Flaxseeds. ... .
Walnuts. ... .
Edamame. ... .
Kidney beans. ... .
Soybean oil..

Related Posts

Toplist

Latest post

TAGs